Copied to
clipboard

G = C6xC32:2C8order 432 = 24·33

Direct product of C6 and C32:2C8

direct product, metabelian, soluble, monomial, A-group

Aliases: C6xC32:2C8, C62.7C12, (C3xC6):3C24, (C32xC6):3C8, C33:14(C2xC8), C32:7(C2xC24), (C3xC62).1C4, C3:Dic3.7C12, C2.3(C6xC32:C4), C6.23(C2xC32:C4), (C3xC6).14(C2xC12), (C2xC6).8(C32:C4), (C6xC3:Dic3).6C2, (C3xC3:Dic3).4C4, C22.2(C3xC32:C4), C3:Dic3.14(C2xC6), (C2xC3:Dic3).10C6, (C32xC6).12(C2xC4), (C3xC3:Dic3).39C22, SmallGroup(432,632)

Series: Derived Chief Lower central Upper central

C1C32 — C6xC32:2C8
C1C32C3xC6C3:Dic3C3xC3:Dic3C3xC32:2C8 — C6xC32:2C8
C32 — C6xC32:2C8
C1C2xC6

Generators and relations for C6xC32:2C8
 G = < a,b,c,d | a6=b3=c3=d8=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, dbd-1=b-1c >

Subgroups: 332 in 96 conjugacy classes, 32 normal (20 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C8, C2xC4, C32, C32, Dic3, C12, C2xC6, C2xC6, C2xC8, C3xC6, C3xC6, C3xC6, C24, C2xDic3, C2xC12, C33, C3xDic3, C3:Dic3, C62, C62, C2xC24, C32xC6, C32xC6, C32:2C8, C6xDic3, C2xC3:Dic3, C3xC3:Dic3, C3xC62, C2xC32:2C8, C3xC32:2C8, C6xC3:Dic3, C6xC32:2C8
Quotients: C1, C2, C3, C4, C22, C6, C8, C2xC4, C12, C2xC6, C2xC8, C24, C2xC12, C32:C4, C2xC24, C32:2C8, C2xC32:C4, C3xC32:C4, C2xC32:2C8, C3xC32:2C8, C6xC32:C4, C6xC32:2C8

Smallest permutation representation of C6xC32:2C8
On 48 points
Generators in S48
(1 33 13 30 47 18)(2 34 14 31 48 19)(3 35 15 32 41 20)(4 36 16 25 42 21)(5 37 9 26 43 22)(6 38 10 27 44 23)(7 39 11 28 45 24)(8 40 12 29 46 17)
(1 13 47)(2 48 14)(3 41 15)(4 16 42)(5 9 43)(6 44 10)(7 45 11)(8 12 46)(17 40 29)(18 33 30)(19 31 34)(20 32 35)(21 36 25)(22 37 26)(23 27 38)(24 28 39)
(2 14 48)(4 42 16)(6 10 44)(8 46 12)(17 29 40)(19 34 31)(21 25 36)(23 38 27)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,33,13,30,47,18)(2,34,14,31,48,19)(3,35,15,32,41,20)(4,36,16,25,42,21)(5,37,9,26,43,22)(6,38,10,27,44,23)(7,39,11,28,45,24)(8,40,12,29,46,17), (1,13,47)(2,48,14)(3,41,15)(4,16,42)(5,9,43)(6,44,10)(7,45,11)(8,12,46)(17,40,29)(18,33,30)(19,31,34)(20,32,35)(21,36,25)(22,37,26)(23,27,38)(24,28,39), (2,14,48)(4,42,16)(6,10,44)(8,46,12)(17,29,40)(19,34,31)(21,25,36)(23,38,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;

G:=Group( (1,33,13,30,47,18)(2,34,14,31,48,19)(3,35,15,32,41,20)(4,36,16,25,42,21)(5,37,9,26,43,22)(6,38,10,27,44,23)(7,39,11,28,45,24)(8,40,12,29,46,17), (1,13,47)(2,48,14)(3,41,15)(4,16,42)(5,9,43)(6,44,10)(7,45,11)(8,12,46)(17,40,29)(18,33,30)(19,31,34)(20,32,35)(21,36,25)(22,37,26)(23,27,38)(24,28,39), (2,14,48)(4,42,16)(6,10,44)(8,46,12)(17,29,40)(19,34,31)(21,25,36)(23,38,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,33,13,30,47,18),(2,34,14,31,48,19),(3,35,15,32,41,20),(4,36,16,25,42,21),(5,37,9,26,43,22),(6,38,10,27,44,23),(7,39,11,28,45,24),(8,40,12,29,46,17)], [(1,13,47),(2,48,14),(3,41,15),(4,16,42),(5,9,43),(6,44,10),(7,45,11),(8,12,46),(17,40,29),(18,33,30),(19,31,34),(20,32,35),(21,36,25),(22,37,26),(23,27,38),(24,28,39)], [(2,14,48),(4,42,16),(6,10,44),(8,46,12),(17,29,40),(19,34,31),(21,25,36),(23,38,27)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])

72 conjugacy classes

class 1 2A2B2C3A3B3C···3H4A4B4C4D6A···6F6G···6X8A···8H12A···12H24A···24P
order1222333···344446···66···68···812···1224···24
size1111114···499991···14···49···99···99···9

72 irreducible representations

dim111111111111444444
type++++-+
imageC1C2C2C3C4C4C6C6C8C12C12C24C32:C4C32:2C8C2xC32:C4C3xC32:C4C3xC32:2C8C6xC32:C4
kernelC6xC32:2C8C3xC32:2C8C6xC3:Dic3C2xC32:2C8C3xC3:Dic3C3xC62C32:2C8C2xC3:Dic3C32xC6C3:Dic3C62C3xC6C2xC6C6C6C22C2C2
# reps1212224284416242484

Matrix representation of C6xC32:2C8 in GL5(F73)

650000
09000
00900
00090
00009
,
10000
080012
0064250
00080
000064
,
10000
0105838
0015467
000640
00008
,
10000
035476938
066384
007676
06604738

G:=sub<GL(5,GF(73))| [65,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[1,0,0,0,0,0,8,0,0,0,0,0,64,0,0,0,0,25,8,0,0,12,0,0,64],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,58,54,64,0,0,38,67,0,8],[1,0,0,0,0,0,35,6,0,66,0,47,6,7,0,0,69,38,67,47,0,38,4,6,38] >;

C6xC32:2C8 in GAP, Magma, Sage, TeX

C_6\times C_3^2\rtimes_2C_8
% in TeX

G:=Group("C6xC3^2:2C8");
// GroupNames label

G:=SmallGroup(432,632);
// by ID

G=gap.SmallGroup(432,632);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,3,84,80,14117,362,18822,1203]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^3=c^3=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,d*b*d^-1=b^-1*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<